

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level in Physics (WPH14) Paper 01: Physics Further Mechanics, Fields and Particles

Question Number	Answer	Mark
1	The only correct answer is C	1
2	The only correct answer is D	1
3	The only correct answer is B	1
4	The only correct answer is D because it must be travelling from Y to X as the radius is decreasing as energy is lost by ionisation and synchrotron radiation and it must be negative if it is travelling from Y to X	1
5	The only correct answer is C	1
6	The only correct answer is B	1
7	The only correct answer is C	1
8	The only correct answer is D	1
9	The only correct answer is A	1
10	The only correct answer is B	1

Question Number	Answer		Mark
11(a)	Opposite charge		
	Or Opposite lepton number	(1)	1
	Do not allow Lepton number of an electron = -1 Do not allow charge of an electron = $+1$		
11(b)			
	Charge of particles shown: $-1, -1, 0, 0$	(1)	
	Lepton number of particles shown: 1, 1, 1, -1	(1)	
	Charge conserved and lepton number conserved, so possible Or		
	But muon lepton number: 1 does not = -1 , not obeyed, so not possible		
	Or		
	But electron lepton number: 0 does not = $1+1$, not obeyed, so not possible	(1)	3
	Total for question 11		4

Question Number	Answer	Mark
12(a)	Circles with point X at centre (at least 2) (1) Increasing spacing with increasing distance from centre (at least 3) (1)	2
12(b)	Use of $F = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r^2}$ (accept use of $F = \frac{k Q_1 Q_2}{r^2}$) (1)	
	$F = 1.8 \times 10^{-4} \text{N} $ (1)	2
	$\frac{\text{Example of calculation}}{F = \frac{-4.5 \times 10^{-9} \text{ C} \times 7.0 \times 10^{-9} \text{ C}}{4\pi \times 8.85 \times 10^{-1} \text{ F m}^{-1} \times (0.040 \text{ m})^2}}$ $F = (-) 1.77 \times 10^{-4} \text{ N}$	
12(c)	Use of $V = \frac{Q}{4\pi\epsilon_0 r}$ (accept use of $V = \frac{kQ}{r}$) and $V = \frac{W}{Q}$	
	Subtract W at 9.0 cm from W at 4.0 cm Or Subtract V at 9.0 cm from V at 4.0 cm (1)	
	Work done = $3.9 \times 10^{-6} \text{J}$ (1)	3
	$W = \frac{\text{Example of calculation}}{4\pi \times 8.85 \times 10^{-12} \text{F m}^{-1} \times 0.040 \text{ m}}$	
	$\frac{-4.5 \text{ nC} \times 7.0 \text{ nC}}{4\pi \times 8.85 \times 10^{-12} \text{F m}^{-1} \times 0.09 \text{ m}}$ = -3.15 × 10 ⁻⁶ J 7.08 × 10 ⁻⁶ J Work done = 3.93 × 10 ⁻⁶ J	
	Total for question 12	7

Question Number	Answer		Mark
13(a)(i)	Use of $W = mg$	(1)	
	Use of suitable trigonometry to calculate lift	(1)	
	Use of suitable trigonometry to calculate resultant force	(1)	
	Use of $F = mv^2/r$	(1)	
	r = 820 (m) (at least 2 s.f.)	(1)	5
	[Accept 760 (m) if $v = 52 \text{ m s}^{-1} \text{ used}$]		
	Example of calculation		
	$W = 1200 \text{ kg} \times 9.81 \text{ N kg}^{-1}$		
	= 11772 N		
	$L = W/\cos\theta = 11772 \text{ N}/\cos 20^{\circ}$		
	= 12527 N		
	$L_{\rm h} = L \sin \theta = 12527 \text{ N} \times \sin 20^{\circ} = 4285 \text{ N}$		
	$4285 \text{ N} = mv^2/r = 1200 \text{ kg} (54 \text{ m s}^{-1})^2 / r$		
	$r = 816 \text{ m} [r = 757 \text{ m if } v = 52 \text{ m s}^{-1} \text{ used}]$		
13(a)(ii)	Use of $v = 2\pi r/T$		
	Or Use of $v = r\omega$ and $\omega = 2\pi/T$	(1)	
	t = 24 s (ecf from a(i))	(1)	2
	[Accept correctly calculated values using value of r calculated in (i) with		
	either $v = 52 \text{ m s}^{-1} \text{ or } v = 54 \text{ m s}^{-1}$		
	Example of calculation		
	$t = (2\pi \times 816 \text{ m} / 4) / 54 \text{m s}^{-1}$		
	t = 23.8 s		
13(b)	An explanation that makes reference to:		
	Resultant upwards force		
	Or lift is greater than weight		
	Or vertical component of lift is now greater than weight	(1)	
	Aeroplane will accelerate upwards	(1)	2
	Actopiane will accelerate upwards	(1)	<u></u>
	Total for question 13		9

Question Number	Answer		Mark
14(a)	Total momentum before an interaction = total momentum after interaction	(1)	
	If no (external) unbalanced / resultant force acts Or in a closed system	(1)	2
14(b)(i)	Use of $E_{\rm K} = \frac{1}{2} mv^2$	(1)	
	Correct value for one object	(1)	3
	Not elastic collision because total E_k before $\neq E_k$ after Or elastic collision total E_k before is (about) the same as E_k after (all values must have been correctly calculated)	(1)	-
	Example of calculation Before $E_{K} = \frac{1}{2} mv^{2}$		
	$= \frac{1}{2} \times 0.85 \text{ kg} \times (1.30 \text{ m s}^{-1})^2 = 0.72 \text{ J}$		
	After $E_{\rm K} = \frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.85 \text{ kg} \times (0.98 \text{ m s}^{-1})^2 = 0.41 \text{ J}$		
	$E_{\rm K} = \frac{1}{2} mv^2$ = $\frac{1}{2} \times 1.70 \text{kg} \times (0.54 \text{m s}^{-1})^2 = 0.25 \text{J}$ Total = 0.66 J		
14(b)(ii)	Use of $p = mv$	(1)	
	Use of trigonometry to find a component of momentum after collision	(1)	
	Shows momentum before in x direction = momentum after in original direction	(1)	
	Shows perpendicular component of A = perpendicular component of B Or Shows total momentum in perpendicular direction after collision is approximately zero	(1)	
	Conclusion that momentum before = momentum after (in both directions) so conservation of momentum is demonstrated successfully (all values must have been correctly calculated) Or Conclusion that momentum before \neq momentum after (in either		
	direction) so conservation of momentum is not demonstrated successfully (all values must have been correctly calculated)	(1)	5
	Example of calculation Before		
	p = mv = 0.85 kg × 1.30 m s ⁻¹ = 1.11 kg m s ⁻¹ horizontal, 0 vertical After – original direction		
	$p = 0.85 \text{ kg} \times 0.98 \text{ m s}^{-1} \times \cos 54.5^{\circ} = 0.484 \text{ kg m s}^{-1}$ $p = 1.70 \text{ kg} \times 0.54 \text{ m s}^{-1} \times \cos 48.0^{\circ} = 0.614 \text{ kg m s}^{-1}$ Total = 1.11 kg m s ⁻¹		
	After – perpendicular to original direction $p = 0.85 \text{ kg} \times 0.98 \text{ m s}^{-1} \times \sin 54.5^{\circ} = 0.68 \text{ kg m s}^{-1}$		
	$p = -1.70 \text{ kg} \times 0.54 \text{ m s}^{-1} \times \sin 48.0^{\circ} = -0.68 \text{ kg m s}^{-1}$ Total for question 14		10

Question Number		Answe	er		Mar
15(a)	This question assesses structured answer with				
	Marks are awarded for	r indicative content ar			
	structured and shows	lines of reasoning.			
	The following table shindicative content.	nows how the marks si	hould be awarde	d for	
	Number of indicative marking points seen in answer	Number of marks awarded for indicative marking points	Max structure mark available	Max final mark	
	6	4	2	6	
	5	3	2	5	
	4	3	1	4	
	3	2	1	3	
	2	2	0	2	
	1	1	0	1	
	0	0	0	0	
	Answer shows a coh structure with linkag sustained lines of reademonstrated throug Answer is partially some linkages and li Answer has no linka and is unstructured	erent and logical es and fully asoning hout tructured with nes of reasoning	Number of mar for structure of sustained line of the sustained lin	ks awarded answer and of reasoning	
	Guidance on how the indicative content sho example, an answer w structured with some I marks for indicative c linkages and lines of r same five indicative m (3 marks for indicative	uld be added to the maith five indicative mainkages and lines of rontent and 1 mark for easoning). If there are narking points would to	ark for lines of re rking points white easoning scores partial structure eno linkages betweed an overall st	easoning. For ch is partially 4 marks (3 and some ween points, the	

	Indicative content: IC1: Wire cuts lines of magnetic flux Or Wire cuts magnetic field lines Or flux linkage of wire changes (1) IC2: Induces e.m.f. (1) IC3: so current in loop of wire (1) IC4: Current in a wire in a magnetic field experiences a force	
	Or Magnetic field associated with this current IC5: Due to Lenz's law there is a force opposing the motion of the wire Or Upward force exerted on wire as the field is such to oppose the change that creates it (1) IC6: Opposite, downward force on magnets, so balance reading increases Or Newton's 3 rd law - downward force on magnets, so balance reading increases (1)	6
15(b)	Use of area swept out = $l \times h$ (1) Use of $t = s/v$ (1) Use of $\varphi = BA$ (1) Use of $\mathcal{E} = d\varphi/dt$ (1) Max p.d. = 0.026 V (1) $\frac{\text{Example of calculation}}{A = 0.034 \text{ m} \times 0.020 \text{ m} = 0.00068 \text{ m}^2}$ $t = 0.020 \text{ m} / 2.2 \text{ m s}^{-1} = 0.0091 \text{ s}$ $\varphi = 0.35 \text{ T} \times 0.034 \text{ m} \times 0.020 \text{ m} = 0.000238 \text{ Wb}$ $\text{Emf} = (0.35 \text{ T} \times 0.034 \text{ m} \times 0.020 \text{ m}) / (0.020 \text{ m} / 2.2 \text{ m s}^{-1})$ Max p.d. = 0.026 V	5
	Total for question 15	11

Question Number	Answer		Mark
16(a)	When charging voltmeter is not across C, Or When switch at X, voltmeter is not across C,	(1)	2
	When discharging the resistor isn't in the circuit, Or with switch at Y, the resistor isn't in the circuit	(1)	
16(b)(i)	Either Takes corresponding pairs values of V and t from graph Use of $\ln V = \ln V_0 - t/RC$	(1)	
	Or Use of $V = V_0 e^{-\frac{t}{RC}}$ $R = 1.1 \times 10^7 \Omega$	(1) (1)	
	Or Draws initial tangent to curve and determines t intercept (range 22 s - 26 s) Use of $T = RC$ $R = 1.1 \times 10^7 \Omega$	(1) (1) (1)	
	Or Read value of t at which $V = V_o / e$ (2.3 V at 24 s) Use of $T = RC$ $R = 1.1 \times 10^7 \Omega$	(1) (1) (1)	3
	Example of calculation eg $V = 4.1 \text{ V}$ and $t = 10 \text{ s}$		
	$\ln 4.1 = \ln 6.2 - \frac{10s}{R \times 2.2 \times 10^{-6} \text{ F}}$		
	$R = 1.1 \times 10^7 \Omega$		
16(b)(ii)	Use of $Q = CV$ Subtract charge at 30 s from charge at 0 s Use of $I = Q/t$ $I = 3.2 \times 10^{-7}$ A	(1) (1) (1) (1)	4
	Example of calculation $Q = 2.2 \times 10^{-6} \mathrm{F} \times 6.2 \mathrm{V} = 1.36 \times 10^{-5} \mathrm{C}$ $Q = 2.2 \times 10^{-6} \mathrm{F} \times 1.8 \mathrm{V} = 3.96 \times 10^{-6} \mathrm{C}$ $1.36 \times 10^{-5} \mathrm{C} - 3.96 \times 10^{-6} \mathrm{C} = 9.64 \times 10^{-6} \mathrm{C}$ $I = 9.64 \times 10^{-6} \mathrm{C} \div 30 \mathrm{s}$ $I = 3.2 \times 10^{-7} \mathrm{A}$		
16(b)(iii)	Use of $W = \frac{1}{2} CV^2$ Subtract energy at 30 s from energy at 0 s Energy dissipated = 3.9×10^{-5} J	(1) (1) (1)	3
	Example of calculation $W = \frac{1}{2} \times 2.2 \times 10^{-6} \mathrm{F} \times (6.2 \mathrm{V})^2 = 4.23 \times 10^{-5} \mathrm{J}$ $W = \frac{1}{2} \times 2.2 \times 10^{-6} \mathrm{F} \times (1.8 \mathrm{V})^2 = 3.56 \times 10^{-6} \mathrm{J}$ $4.23 \times 10^{-5} \mathrm{J} - 3.56 \times 10^{-6} \mathrm{J} = 3.87 \times 10^{-5} \mathrm{J}$ Energy dissipated = $3.9 \times 10^{-5} \mathrm{J}$		
	Total for question 16		12

Question Number	Answer	Mark
17(a)(i)	Equates $F = BQv$ and $F = EQ$ (1) Uses $E = V/d$ (1) Suitable algebra to give $v = V/Bd$ (1)	3
	Example derivation $BQv = EQ$ $v = E/B$ $E = V/d$ $v = V/Bd$	
17(a)(ii)	Use of $v = V/dB$ (1) $v = 2.8 \times 10^7 \text{ m s}^{-1}$ (1) Example of calculation $v = 231 \text{ V}/0.015 \text{ m} \times 5.5 \times 10^{-4} \text{ T}$	2
17(a)(iii)	$v = 2.8 \times 10^7 \text{ m s}^{-1}$ States $r = p/BQ$ and $p = mv$	
	Or States $F = mv^2/r$ and $F = BQv$ (1) Derives and uses $Q/m = v/rB$ (1) $Q/m = 1.3 \times 10^{11} (\text{C kg}^{-1})$ is less than the accepted value (1)	3
	Example of calculation Q/m = v/rB = 2.8 × 10 ⁷ m s ⁻¹ / 0.39 m × 5.5 × 10 ⁻⁴ T 1.31×10 ¹¹ C kg ⁻¹	
17(b)	This is a diffraction/interference pattern (1)	
	Or Particles do not undergo diffraction (1)	
	(So) an electron does not always behave as a particle Or (so) electrons can behave as waves (and as particles) (1)	3
	Total for question 17	11

eneration, u and d, are a pair and 2 nd gen, s and c, are a pair th quark is a pair with b ymmetry of the standard model mark to match each lepton ectron and muon had associated neutrino, so predict) neutrino for tau, so 6 th k would match that ymmetry of the standard model ons and baryons er If target is stationary there is resultant momentum, so products must have resultant momentum after collision So products must have high kinetic energy (Therefore) less/little energy available for formation of particles	(1) (1) (1) (1) (1) (1) (1) (1)	3 1
ctron and muon had associated neutrino, so predict) neutrino for tau, so 6 th k would match that ymmetry of the standard model ons and baryons er If target is stationary there is resultant momentum, so products must have resultant momentum after collision So products must have high kinetic energy	(1) (1) (1) (1) (1)	
 er If target is stationary there is resultant momentum, so products must have resultant momentum after collision So products must have high <u>kinetic</u> energy 	(1) (1)	1
 If target is stationary there is resultant momentum, so products must have resultant momentum after collision So products must have high <u>kinetic</u> energy 	(1)	
(so) less massive particles formed	(1) (1)	
 If beams collide there is zero resultant momentum, so products may have no/low momentum after collision So products do not have high <u>kinetic</u> energy (Therefore) all/most/more energy available for formation of particles (so) more massive particles formed 	(1) (1) (1) (1)	4
of total energy = rest mass energy + kinetic energy of eV to J conversion etic energy = 1.16×10^{-7} J mple of calculation etic energy = $900 \text{ GeV} - 173 \text{ GeV} = 727 \text{ GeV}$ etic energy = $727 \times 10^9 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1}$ etic energy = 1.16×10^{-7} J	(1) (1) (1)	3
of $\Delta E = c^2 \Delta m$ to convert from GeV/ c^2 to kg of $E_K = \frac{1}{2} mv^2$ 8.8 × 10 ⁸ m s ⁻¹ , which is greater than the speed of light mple of calculation	(1) (1) (1)	3
	tric energy = $1.16 \times 10^{-7} \text{ J}$ Imple of calculation Stric energy = $900 \text{ GeV} - 173 \text{ GeV} = 727 \text{ GeV}$ Stric energy = $727 \times 10^9 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1}$ Stric energy = $1.16 \times 10^{-7} \text{ J}$ Find $\Delta E = c^2 \Delta m$ to convert from GeV/c^2 to kg of $E_K = \frac{1}{2} mv^2$ $8.8 \times 10^8 \text{ m s}^{-1}$, which is greater than the speed of light mple of calculation $S = \frac{173 \text{ GeV}/c^2 \times 10^9 \times 1.6 \times 10^{-19} \text{JeV}^{-1}}{(3 \times 10^8)^2 \text{ (m s}^{-1})^2} = 3.08 \times 10^{-25} \text{ kg}$ $\times 10^{-7} \text{ J} = \frac{1}{2} \times 3.08 \times 10^{-25} \text{ kg} \times v^2$	tric energy = $1.16 \times 10^{-7} \mathrm{J}$ (1) Imple of calculation Price energy = $900 \mathrm{GeV} - 173 \mathrm{GeV} = 727 \mathrm{GeV}$ Trice energy = $727 \times 10^9 \mathrm{eV} \times 1.6 \times 10^{-19} \mathrm{J} \mathrm{eV}^{-1}$ Trice energy = $1.16 \times 10^{-7} \mathrm{J}$ Of $\Delta E = c^2 \Delta m$ to convert from GeV/c^2 to kg of $E_K = \frac{1}{2} mv^2$ (1) 13.8 × 10 ⁸ m s ⁻¹ , which is greater than the speed of light mple of calculation $s = \frac{173 \mathrm{GeV}/c^2 \times 10^9 \times 1.6 \times 10^{-19} \mathrm{JeV}^{-1}}{(3 \times 10^8)^2 (\mathrm{m s}^{-1})^2} = 3.08 \times 10^{-25} \mathrm{kg}$

But the time to form hadrons would also increase as seen by the observer, so it is incorrect Or the lifetime would not increase as seen by the top quark, so it is incorrect	(1)	2
Total for question 18	(1)	16